Skip Headers
Oracle® Database Data Warehousing Guide
10g Release 2 (10.2)

Part Number B14223-02
Go to Documentation Home
Home
Go to Book List
Book List
Go to Table of Contents
Contents
Go to Index
Index
Go to Master Index
Master Index
Go to Feedback page
Contact Us

Go to previous page
Previous
Go to next page
Next
PDF · Mobi · ePub

7 Integrity Constraints

This chapter describes integrity constraints, and discusses:

Why Integrity Constraints are Useful in a Data Warehouse

Integrity constraints provide a mechanism for ensuring that data conforms to guidelines specified by the database administrator. The most common types of constraints include:

Constraints can be used for these purposes in a data warehouse:

Unlike data in many relational database environments, data in a data warehouse is typically added or modified under controlled circumstances during the extraction, transformation, and loading (ETL) process. Multiple users normally do not update the data warehouse directly, as they do in an OLTP system.

Overview of Constraint States

To understand how best to use constraints in a data warehouse, you should first understand the basic purposes of constraints. Some of these purposes are:

Typical Data Warehouse Integrity Constraints

This section assumes that you are familiar with the typical use of constraints. That is, constraints that are both enabled and validated. For data warehousing, many users have discovered that such constraints may be prohibitively costly to build and maintain. The topics discussed are:

UNIQUE Constraints in a Data Warehouse

A UNIQUE constraint is typically enforced using a UNIQUE index. However, in a data warehouse whose tables can be extremely large, creating a unique index can be costly both in processing time and in disk space.

Suppose that a data warehouse contains a table sales, which includes a column sales_id. sales_id uniquely identifies a single sales transaction, and the data warehouse administrator must ensure that this column is unique within the data warehouse.

One way to create the constraint is as follows:

ALTER TABLE sales ADD CONSTRAINT sales_uk
UNIQUE (prod_id, cust_id, promo_id, channel_id, time_id);

By default, this constraint is both enabled and validated. Oracle implicitly creates a unique index on sales_id to support this constraint. However, this index can be problematic in a data warehouse for three reasons:

  • The unique index can be very large, because the sales table can easily have millions or even billions of rows.

  • The unique index is rarely used for query execution. Most data warehousing queries do not have predicates on unique keys, so creating this index will probably not improve performance.

  • If sales is partitioned along a column other than sales_id, the unique index must be global. This can detrimentally affect all maintenance operations on the sales table.

A unique index is required for unique constraints to ensure that each individual row modified in the sales table satisfies the UNIQUE constraint.

For data warehousing tables, an alternative mechanism for unique constraints is illustrated in the following statement:

ALTER TABLE sales ADD CONSTRAINT sales_uk
UNIQUE (prod_id, cust_id, promo_id, channel_id, time_id) DISABLE VALIDATE;

This statement creates a unique constraint, but, because the constraint is disabled, a unique index is not required. This approach can be advantageous for many data warehousing environments because the constraint now ensures uniqueness without the cost of a unique index.

However, there are trade-offs for the data warehouse administrator to consider with DISABLE VALIDATE constraints. Because this constraint is disabled, no DML statements that modify the unique column are permitted against the sales table. You can use one of two strategies for modifying this table in the presence of a constraint:

  • Use DDL to add data to this table (such as exchanging partitions). See the example in Chapter 15, "Maintaining the Data Warehouse".

  • Before modifying this table, drop the constraint. Then, make all necessary data modifications. Finally, re-create the disabled constraint. Re-creating the constraint is more efficient than re-creating an enabled constraint. However, this approach does not guarantee that data added to the sales table while the constraint has been dropped is unique.

FOREIGN KEY Constraints in a Data Warehouse

In a star schema data warehouse, FOREIGN KEY constraints validate the relationship between the fact table and the dimension tables. A sample constraint might be:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
ENABLE VALIDATE;

However, in some situations, you may choose to use a different state for the FOREIGN KEY constraints, in particular, the ENABLE NOVALIDATE state. A data warehouse administrator might use an ENABLE NOVALIDATE constraint when either:

  • The tables contain data that currently disobeys the constraint, but the data warehouse administrator wishes to create a constraint for future enforcement.

  • An enforced constraint is required immediately.

Suppose that the data warehouse loaded new data into the fact tables every day, but refreshed the dimension tables only on the weekend. During the week, the dimension tables and fact tables may in fact disobey the FOREIGN KEY constraints. Nevertheless, the data warehouse administrator might wish to maintain the enforcement of this constraint to prevent any changes that might affect the FOREIGN KEY constraint outside of the ETL process. Thus, you can create the FOREIGN KEY constraints every night, after performing the ETL process, as shown in the following:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
ENABLE NOVALIDATE;

ENABLE NOVALIDATE can quickly create an enforced constraint, even when the constraint is believed to be true. Suppose that the ETL process verifies that a FOREIGN KEY constraint is true. Rather than have the database re-verify this FOREIGN KEY constraint, which would require time and database resources, the data warehouse administrator could instead create a FOREIGN KEY constraint using ENABLE NOVALIDATE.

RELY Constraints

The ETL process commonly verifies that certain constraints are true. For example, it can validate all of the foreign keys in the data coming into the fact table. This means that you can trust it to provide clean data, instead of implementing constraints in the data warehouse. You create a RELY constraint as follows:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id) 
RELY DISABLE NOVALIDATE;

This statement assumes that the primary key is in the RELY state. RELY constraints, even though they are not used for data validation, can:

  • Enable more sophisticated query rewrites for materialized views. See Chapter 17, "Basic Query Rewrite" for further details.

  • Enable other data warehousing tools to retrieve information regarding constraints directly from the Oracle data dictionary.

Creating a RELY constraint is inexpensive and does not impose any overhead during DML or load. Because the constraint is not being validated, no data processing is necessary to create it.

NOT NULL Constraints

When using query rewrite, you should consider whether NOT NULL constraints are required. The primary situation where you will need to use them is for join back query rewrite. See Chapter 18, "Advanced Query Rewrite" for further information regarding NOT NULL constraints when using query rewrite.

Integrity Constraints and Parallelism

All constraints can be validated in parallel. When validating constraints on very large tables, parallelism is often necessary to meet performance goals. The degree of parallelism for a given constraint operation is determined by the default degree of parallelism of the underlying table.

Integrity Constraints and Partitioning

You can create and maintain constraints before you partition the data. Later chapters discuss the significance of partitioning for data warehousing. Partitioning can improve constraint management just as it does to management of many other operations. For example, Chapter 15, "Maintaining the Data Warehouse" provides a scenario creating UNIQUE and FOREIGN KEY constraints on a separate staging table, and these constraints are maintained during the EXCHANGE PARTITION statement.

View Constraints

You can create constraints on views. The only type of constraint supported on a view is a RELY constraint.

This type of constraint is useful when queries typically access views instead of base tables, and the database administrator thus needs to define the data relationships between views rather than tables. View constraints are particularly useful in OLAP environments, where they may enable more sophisticated rewrites for materialized views.